Μια νέα βρετανική επιστημονική έρευνα υποστηρίζει πως οι μέλισσες είναι σε θέση να επιλύουν πολύπλοκα μαθηματικά προβλήματα, τα οποία οι ηλεκτρονικοί υπολογιστές κάνουν μέρες να λύσουν!
Οι ερευνητές του Πανεπιστημίου του Λονδίνου (Royal Holloway), υπό τον δρ Νάιτζελ Ρέιν της Σχολής Βιολογικών Επιστημών που δημοσίευσαν τη σχετική μελέτη στο αμερικανικό περιοδικό οικολογίας και βιολογίας «The American Naturalist», διαπίστωσαν ότι οι μέλισσες μαθαίνουν να πετούν ακολουθώντας τη συντομότερη δυνατή διαδρομή ανάμεσα στα λουλούδια, την οποία έχουν προηγουμένως ανακαλύψει με τυχαία σειρά. Με τον τρόπο αυτό ουσιαστικά, «επιλύουν» το λεγόμενο «πρόβλημα του περιοδεύοντος πωλητή», ένα διάσημο και δισεπίλυτο γρίφο στον χώρο των οικονομικών και των μαθηματικών.
Στο πρόβλημα αυτό, ένας άνθρωπος (πωλητής) καλείται να βρει τη συντομότερη δυνατή διαδρομή ανάμεσα σε όλους τους προορισμούς που πρέπει να επισκεφτεί. Οι ηλεκτρονικοί υπολογιστές λύνουν το πρόβλημα, συγκρίνοντας το μήκος όλων των πιθανών διαδρομών και επιλέγοντας τον πιο σύντομο. Όμως οι μέλισσες φαίνεται να κάνουν ουσιαστικά το ίδιο πράγμα κάθε μέρα, χωρίς καν τη βοήθεια κομπιούτερ. Το κάνουν απλώς με έναν εγκέφαλο, που δεν είναι μεγαλύτερος από ένα σπόρο φυτού.
Όπως είπαν οι επιστήμονες, καθημερινά οι μέλισσες ξεκινούν να επισκεφτούν μια πληθώρα λουλουδιών σε διάφορες τοποθεσίες και, επειδή θέλουν να κάνουν εξοικονόμηση ενέργειας για το πέταγμά τους, «υπολογίζουν» μια διαδρομή που τους επιτρέπει να βρίσκονται στον αέρα το ελάχιστο δυνατό χρονικό διάστημα.
Οι ερευνητές, χρησιμοποιώντας τεχνητά άνθη, συνδεμένα με υπολογιστές, απέδειξαν ότι οι μέλισσες δεν χαράζουν μια πορεία απλώς με βάση την τυχαία σειρά που βρήκαν προηγουμένως τα λουλούδια, αλλά πάνε από λουλούδι σε λουλούδι, ακολουθώντας συγκεκριμένο «σχέδιο» που τους επιτρέπει να πετάνε όσο γίνεται λιγότερο.
«Παρά τους μικροσκοπικούς εγκεφάλους τους, οι μέλισσες είναι ικανές για εντυπωσιακά κατορθώματα στη συμπεριφορά τους. Πρέπει να καταλάβουμε με ποιο τρόπο μπορούν να λύσουν το πρόβλημα του περιοδεύοντος πωλητή χωρίς κομπιούτερ» δήλωσε ο υπεύθυνος της έρευνας.
Οι επιστήμονες ευελπιστούν ότι μια τέτοια ανακάλυψη θα μπορούσε να βοηθήσει και τους ανθρώπους σε διάφορα πρακτικά προβλήματα, όπως στην καλύτερη ρύθμιση της κυκλοφορίας σε ένα δίκτυο (π.χ. κυκλοφοριακό) ή στην εκτεταμένη αλυσίδα τροφοδοσίας μιας επιχείρησης, που στέλνει φορτηγά σε όλα τα σημεία του ορίζοντα και θέλει να εξοικονομήσει χρόνο και χρήμα στις μετακινήσεις.
Από όλα τα κανονικά επίπεδα σχήματα, εκείνα που η μέλισσα θα μπορούσε να χρησιμοποιήσει για την κατασκευή των κελιών της, είναι τρία. Το ισόπλευρο τρίγωνο, το τετράγωνο και το κανονικό εξάγωνο. Μόνον αυτά τα τρία γεωμετρικά σχήματα «κλείνουν» ακριβώς το επίπεδο χωρίς να αφήνουν κενά μεταξύ τους. Π.χ. τα πεντάγωνα , τα επτάγωνα, οκτάγωνα κλ.π δεν «κουμπώνουν» επακριβώς μεταξύ των. Αφήνουν ενδιάμεσο κενό χώρο. (π.χ. Πενταγωνική και οκταγωνική διάταξη)
Γιατί όμως η μέλισσα επιλέγει το κανονικό εξάγωνο και όχι το ισόπλευρο τρίγωνο ή το τετράγωνο; Ιδού το ερώτημα! Γνωρίζουμε ότι η μέλισσα σε κάθε κελλί εναποθέτει την αυτή ποσότητα μελιού. Ας υποθέσουμε ότι το απαιτούμενο εμβαδόν για κάθε κελί είναι 1 τετραγωνική μονάδα. Αν κατασκεύαζε π.χ. τετραγωνικές κυψελίδες τότε αυτές θα είχαν πλευρά 1 μονάδα μήκους, οπότε 1 Χ 1=1 τετραγωνική μονάδα. Αν θα κατασκεύαζε ισόπλευρες τριγωνικές κυψελίδες, τι μήκος θα έπρεπε να έχει η κάθε πλευρά του ισοπλεύρου τριγώνου ώστε το εμβαδόν του να είναι ισοδύναμο με 1 τετραγωνική μονάδα;
Από τον τύπο υπολογισμού του εμβαδού (*) οποιουδήποτε κανονικού πολυγώνου επιλύουμε ως προς a και για εμβαδόν = 1 τετρ. μονάδα, βρίσκουμε ότι το τρίγωνο θα έπρεπε να έχει μήκος πλευράς ίσο με = 1,52 μονάδες μήκους.
Αν κατά τον ίδιο τρόπο υπολογίσουμε το μήκος της πλευράς του ισοδύναμου κανονικού εξαγώνου, βρίσκουμε ότι το μήκος της πλευρά του ισούται με 0,62 μονάδες μήκους.
Επομένως :
- στην περίπτωση της τριγωνικής κατασκευής η περίμετρος του τριγώνου ισούται με 3 Χ 1,52 = 4,56 μονάδες μήκους.
- στην περίπτωση κατά την οποία η μέλισσα θα κατασκεύαζε ορθογωνικά κελιά το καθένα θα είχε περίμετρο 4 Χ 1 = 4 μονάδες μήκους.
- στην περίπτωση της εξαγωνικής κατασκευής η περίμετρος του κάθε κελιού ισούται με 0,62 Χ 6 = 3,72 μονάδες μήκους.
Συμπέρασμα:
Παρατηρούμε ότι η επιλογή του εξαγωνικού σχήματος δεν είναι τυχαία. Αφενός μεν «κλείνει» επακριβώς το επίπεδο χωρίς κενά, αλλά είναι και το μοναδικό σχήμα με την μικρότερη περίμετρο. Δηλαδή η μέλισσα δαπανά λιγότερο κερί για την κατασκευή των κελιών της.
Και συνεχίζω με κάτι πιο εντυπωσιακό. Η πλευρά του εξαγώνου (=0,62) σε σχέση με την πλευρά του ισοδυνάμου τετραγώνου (=1) έχουν σχέση χρυσής τομής. Πράγματι ο λόγος 1 / 0,62 = 1,62 όπου 1,62 = φ. Ο νόμος της τέλειας αρμονίας σε όλο του το μεγαλείο. Η πλευρές δηλαδή του των ισοδυνάμων τετραγώνου και εξαγώνου σχηματίζουν το χρυσό ορθογώνιο στο οποίο ο λόγος των πλευρών ισούται με 1,62 ήτοι =φ. Για τον αριθμό φ βεβαίως θα μπορούσαμε να αναπτύξουμε ολόκληρη πραγματεία αλλά δεν είναι επί του παρόντος. Αρκεί να αναφέρουμε ότι όλες οι αρμονικές σχέσεις στην φύση καθορίζονται από αυτόν το ιεροκρύφιο αριθμό. Οι αρχαίοι Έλληνες ήταν οι πρώτοι που τον είχαν προσδιορίσει μαθηματικώς και τον εφάρμοζαν σε κάθε καλλιτεχνική τους δημιουργία, γλυπτική αρχιτεκτονική, μουσική. (συμβολίζεται με το γράμμα της ελληνικής αλφαβήτου φ προς τιμή του Φειδία).
Οι ερευνητές του Πανεπιστημίου του Λονδίνου (Royal Holloway), υπό τον δρ Νάιτζελ Ρέιν της Σχολής Βιολογικών Επιστημών που δημοσίευσαν τη σχετική μελέτη στο αμερικανικό περιοδικό οικολογίας και βιολογίας «The American Naturalist», διαπίστωσαν ότι οι μέλισσες μαθαίνουν να πετούν ακολουθώντας τη συντομότερη δυνατή διαδρομή ανάμεσα στα λουλούδια, την οποία έχουν προηγουμένως ανακαλύψει με τυχαία σειρά. Με τον τρόπο αυτό ουσιαστικά, «επιλύουν» το λεγόμενο «πρόβλημα του περιοδεύοντος πωλητή», ένα διάσημο και δισεπίλυτο γρίφο στον χώρο των οικονομικών και των μαθηματικών.
Στο πρόβλημα αυτό, ένας άνθρωπος (πωλητής) καλείται να βρει τη συντομότερη δυνατή διαδρομή ανάμεσα σε όλους τους προορισμούς που πρέπει να επισκεφτεί. Οι ηλεκτρονικοί υπολογιστές λύνουν το πρόβλημα, συγκρίνοντας το μήκος όλων των πιθανών διαδρομών και επιλέγοντας τον πιο σύντομο. Όμως οι μέλισσες φαίνεται να κάνουν ουσιαστικά το ίδιο πράγμα κάθε μέρα, χωρίς καν τη βοήθεια κομπιούτερ. Το κάνουν απλώς με έναν εγκέφαλο, που δεν είναι μεγαλύτερος από ένα σπόρο φυτού.
Όπως είπαν οι επιστήμονες, καθημερινά οι μέλισσες ξεκινούν να επισκεφτούν μια πληθώρα λουλουδιών σε διάφορες τοποθεσίες και, επειδή θέλουν να κάνουν εξοικονόμηση ενέργειας για το πέταγμά τους, «υπολογίζουν» μια διαδρομή που τους επιτρέπει να βρίσκονται στον αέρα το ελάχιστο δυνατό χρονικό διάστημα.
Οι ερευνητές, χρησιμοποιώντας τεχνητά άνθη, συνδεμένα με υπολογιστές, απέδειξαν ότι οι μέλισσες δεν χαράζουν μια πορεία απλώς με βάση την τυχαία σειρά που βρήκαν προηγουμένως τα λουλούδια, αλλά πάνε από λουλούδι σε λουλούδι, ακολουθώντας συγκεκριμένο «σχέδιο» που τους επιτρέπει να πετάνε όσο γίνεται λιγότερο.
«Παρά τους μικροσκοπικούς εγκεφάλους τους, οι μέλισσες είναι ικανές για εντυπωσιακά κατορθώματα στη συμπεριφορά τους. Πρέπει να καταλάβουμε με ποιο τρόπο μπορούν να λύσουν το πρόβλημα του περιοδεύοντος πωλητή χωρίς κομπιούτερ» δήλωσε ο υπεύθυνος της έρευνας.
Οι επιστήμονες ευελπιστούν ότι μια τέτοια ανακάλυψη θα μπορούσε να βοηθήσει και τους ανθρώπους σε διάφορα πρακτικά προβλήματα, όπως στην καλύτερη ρύθμιση της κυκλοφορίας σε ένα δίκτυο (π.χ. κυκλοφοριακό) ή στην εκτεταμένη αλυσίδα τροφοδοσίας μιας επιχείρησης, που στέλνει φορτηγά σε όλα τα σημεία του ορίζοντα και θέλει να εξοικονομήσει χρόνο και χρήμα στις μετακινήσεις.
Οι μέλισσες και η χρυσή τομή!
Από όλα τα κανονικά επίπεδα σχήματα, εκείνα που η μέλισσα θα μπορούσε να χρησιμοποιήσει για την κατασκευή των κελιών της, είναι τρία. Το ισόπλευρο τρίγωνο, το τετράγωνο και το κανονικό εξάγωνο. Μόνον αυτά τα τρία γεωμετρικά σχήματα «κλείνουν» ακριβώς το επίπεδο χωρίς να αφήνουν κενά μεταξύ τους. Π.χ. τα πεντάγωνα , τα επτάγωνα, οκτάγωνα κλ.π δεν «κουμπώνουν» επακριβώς μεταξύ των. Αφήνουν ενδιάμεσο κενό χώρο. (π.χ. Πενταγωνική και οκταγωνική διάταξη)
Γιατί όμως η μέλισσα επιλέγει το κανονικό εξάγωνο και όχι το ισόπλευρο τρίγωνο ή το τετράγωνο; Ιδού το ερώτημα! Γνωρίζουμε ότι η μέλισσα σε κάθε κελλί εναποθέτει την αυτή ποσότητα μελιού. Ας υποθέσουμε ότι το απαιτούμενο εμβαδόν για κάθε κελί είναι 1 τετραγωνική μονάδα. Αν κατασκεύαζε π.χ. τετραγωνικές κυψελίδες τότε αυτές θα είχαν πλευρά 1 μονάδα μήκους, οπότε 1 Χ 1=1 τετραγωνική μονάδα. Αν θα κατασκεύαζε ισόπλευρες τριγωνικές κυψελίδες, τι μήκος θα έπρεπε να έχει η κάθε πλευρά του ισοπλεύρου τριγώνου ώστε το εμβαδόν του να είναι ισοδύναμο με 1 τετραγωνική μονάδα;
Από τον τύπο υπολογισμού του εμβαδού (*) οποιουδήποτε κανονικού πολυγώνου επιλύουμε ως προς a και για εμβαδόν = 1 τετρ. μονάδα, βρίσκουμε ότι το τρίγωνο θα έπρεπε να έχει μήκος πλευράς ίσο με = 1,52 μονάδες μήκους.
Αν κατά τον ίδιο τρόπο υπολογίσουμε το μήκος της πλευράς του ισοδύναμου κανονικού εξαγώνου, βρίσκουμε ότι το μήκος της πλευρά του ισούται με 0,62 μονάδες μήκους.
Επομένως :
- στην περίπτωση της τριγωνικής κατασκευής η περίμετρος του τριγώνου ισούται με 3 Χ 1,52 = 4,56 μονάδες μήκους.
- στην περίπτωση κατά την οποία η μέλισσα θα κατασκεύαζε ορθογωνικά κελιά το καθένα θα είχε περίμετρο 4 Χ 1 = 4 μονάδες μήκους.
- στην περίπτωση της εξαγωνικής κατασκευής η περίμετρος του κάθε κελιού ισούται με 0,62 Χ 6 = 3,72 μονάδες μήκους.
Συμπέρασμα:
Παρατηρούμε ότι η επιλογή του εξαγωνικού σχήματος δεν είναι τυχαία. Αφενός μεν «κλείνει» επακριβώς το επίπεδο χωρίς κενά, αλλά είναι και το μοναδικό σχήμα με την μικρότερη περίμετρο. Δηλαδή η μέλισσα δαπανά λιγότερο κερί για την κατασκευή των κελιών της.
Και συνεχίζω με κάτι πιο εντυπωσιακό. Η πλευρά του εξαγώνου (=0,62) σε σχέση με την πλευρά του ισοδυνάμου τετραγώνου (=1) έχουν σχέση χρυσής τομής. Πράγματι ο λόγος 1 / 0,62 = 1,62 όπου 1,62 = φ. Ο νόμος της τέλειας αρμονίας σε όλο του το μεγαλείο. Η πλευρές δηλαδή του των ισοδυνάμων τετραγώνου και εξαγώνου σχηματίζουν το χρυσό ορθογώνιο στο οποίο ο λόγος των πλευρών ισούται με 1,62 ήτοι =φ. Για τον αριθμό φ βεβαίως θα μπορούσαμε να αναπτύξουμε ολόκληρη πραγματεία αλλά δεν είναι επί του παρόντος. Αρκεί να αναφέρουμε ότι όλες οι αρμονικές σχέσεις στην φύση καθορίζονται από αυτόν το ιεροκρύφιο αριθμό. Οι αρχαίοι Έλληνες ήταν οι πρώτοι που τον είχαν προσδιορίσει μαθηματικώς και τον εφάρμοζαν σε κάθε καλλιτεχνική τους δημιουργία, γλυπτική αρχιτεκτονική, μουσική. (συμβολίζεται με το γράμμα της ελληνικής αλφαβήτου φ προς τιμή του Φειδία).
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.